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Introduction 

In this book we will describe Theta Criteria properties and their 

application areas.  

Theta Criteria are based on operator's theory and matrices 

decompositions. The main idea is to evaluate differences between  

sets of operators' eigenvalues & eigenvectors or eigenfunctions.  

Theta Criteria will lead to more efficient analysis, optimization and 

prognosis of multivariate systems and applications. Theta Criteria can 

be used for data set mining and image processing. The book is 

designed as a complementary tool for applied mathematics methods.  

We assume the Reader has standard undergraduate knowledge of 

advanced calculus, matrix theory, operator theory, approximation 

methods and measure theory. 

The book consists of Introduction and four Chapters.  

In Chapter I we briefly review existing methods and software 

packages for multivariate systems analysis. These methods are based 

upon Multivariate General Linear Hypothesis (MGLH).  

In line with MGLH, all dataset variables are linear, additive and 

relationships models are linear series of weighted terms. 

We also mention the following methods: Multiple Regression, 

Discriminant Function Analysis, Canonical Analysis, Principle 
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Components Analysis and formal linear algebra methods. Lastly, we 

discuss our methods, Theta Criteria, which are constructed on norms 

of weighted differences of matrices ordered eigenvectors. 

In Chapter II, we placed our main formal results. At this moment we 

considered only positively-defined matrices.  

In Chapter III we have numerically studied Theta Criteria on sets of 

varied matrices. We compare Theta Criteria accuracy with existing 

matrices' norms and invariants. 

In Chapter IV, we briefly discuss Theta Criteria application areas. 

At this moment we are only able to "scratch the surface" of Theta 

Criteria universe. We are convinced that our methods will find their 

places in various complex applications. 

We express our gratitude to Academic Vladimir Skurichin  

(Ukrainian Academy of Science) for his guidance.  
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Notation 

 

R is real numbers field 

nR -finite linear vector space over R  

n x nR -set of all positively defined matrices of order n  

    n RRRR, ˆrankrank;ˆ n x nR , 









2

1

AB

BA
R

T

, 









2AB

BA
R

ˆˆ

ˆˆ
ˆ 1

T

 -  

block matrices 

mjiija
,1,1 ][


A , 

nmjiija
,1,2 ][


A  , 

mjnmiija
,1;,1

][


B  - sub matrices 

mjiija
,1,1 ]ˆ[ˆ


A , 

nmjiija
,1,2 ]ˆ[ˆ


A  , 

mjnmiija
,1;,1

]ˆ[ˆ


B  - sub matrices 

niinii ,1,1
}ˆ{ˆ,}{


  ΛΛ  - sets of all ordered eigenvalues of RR, ˆ , 

njijijiji ,1,,,ˆˆ,    

nii ,1
}{


 eE  ,  

nii ,1
}ˆ{ˆ


 eE  sets of all RR, ˆ orthonormalized eigenvectors 

 iii e ψ ,  - i -th eigenpair of i  and ie  


n

i
i

1

 Ψ1Ψ ,   niiii ,1,ˆ  ψ,ψ Ψ   - a set of i -th eigenpairs ii ψ,ψ ˆ of RR, ˆ  

ij

n

ji

Ψ 
1, 

2Ψ ,        njijjiijiij ,1,with  ˆ,,ˆ,  ψψψψΨ,Ψ Ψ  - a set of two 

pairs of eigenpairs ji Ψ,Ψ  of RR, ˆ  

    nnn
ψψψψΨ ˆ,...ˆ, 11,1

nΨ  be a set of n  eigenpairs nΨΨΨ ,..., 21  



 X 

Rdet - determinant of matrix R  

Rcond  - condition of matrix R  

  - Theta Criteria 

T - limited linear, self-conjugated integral matrix from space ),(2 XL  

into ),(2 XL  

),((.,.) 2   XXK L  - matrix’s kernel 

2
 - Euclidean norm 

LINK  - linkage coefficient between matrices blocks 

      0det ,ˆrank ,rank  ,{ 0   i
N
ii nn} RRRRR - the sequence of 

symmetrical positively defined matrices 

))(det(R  - forward difference of the determinants of RR, ˆ  

  Rcond  - forward difference of the condition numbers of RR, ˆ  
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CHAPTER I  

Existing Methods for Multivariate Data Processing 

There are three major mathematical and statistical software packages to 

process multivariate data:  

 MATLAB® [1] 

 SAS® [2] 

 SPSS® [3] 

These software packages are based on Multivariate General Linear 

Hypothesis (MGLH) [4]:   

 All dataset variables are linear  

 Additive  

 Relationships models are linear series of weighted terms.  

The MGLH is implemented using the following procedures:  

 Multiple Regression 

 Discriminant Function Analysis 

 Canonical Analysis 

 Principle Components Analysis 

 Formal linear algebra methods 

We will now discuss these procedures in detail. 
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Multiple Regression Equation  

y = b1x1 + b2x2 + ... + bnxn + c 

In this equation, y is a dependent variable, bi - regression coefficients 

and xi - independent variables. This equation evaluates y variance 

proportion at a significant level and xi relative predictive importance. 

This method evaluates dependent variable based on independent 

variable values. 

 

Discriminant Function Analysis  

This method determines which variables discriminate between two or 

more groups on covariance matrix of group variances and  

co-variances. Then one of the test statistics for eigenvalue analysis, 

such as Wilks' Lambda, is used. This method is identical to 

multivariate analysis of variance or MANOVA. For several groups, 

additional Discriminant functions can be used.  

 

Canonical Analysis  

This method uses optimal variables combination for multiple group 

Discriminant analysis. The first function is the most informative 

description, the second is second most, and so on. The functions ought 

to be independent or orthogonal. The canonical correlation analysis is 

based primarily on canonical roots or eigenvalues.  
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Factor Structure Method  

This method analyzes correlations of variables and interpretes the 

Discriminant functions' values. This method places heavy emphasis on 

results interpretation and will not be reviewed here.  

 

Principle Components Analysis (PCA)  

This method has been used to estimate the dataset variance in terms of 

principle components. The method goals are to reduce data 

dimensionality, define the most informative components and noise 

filtering. The standard normalization procedure removes noise, 

stabilizes the data. Regrettably, this method has limited efficiency as 

data structure identification tool. The PCA defines mutually-

orthogonal or uncorrelated projections set. For square and symmetric 

matrix with ordered eigenvalues, the first principal component 

direction coincides with 1st eigenvector direction. The second 

principal component direction coincides with direction of 2nd 

eigenvector direction. The procedure iterates until satisfactory 

accuracy has been achieved. 

 

For symmetric matrix, the eigenvalue and eigenvectors can be found 

by a Householder reduction procedure and QL algorithm.  For  

non-square or non-symmetric data matrix A, the singular value 

decomposition U V' of A can be formed. Here matrix V contains the 

eigenvectors, and the squared diagonal matrix U contains the 

eigenvalues [5], [6]. 
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Formal Linear Algebra Methods  

These methods use various norms, determinant, trace and condition to 

evaluate the matrices distance. Nearly all of those criteria can be 

represented as various functions of eigenvalues [7], [8].  

 

Theta Criteria  

According to Spectral and Hilbert Theorems, the whole sets of 

eigenvalues & eigenvectors or eigenvalues & eigenfunctions fully 

describe matrix or operator. Our methods (Theta Criteria) are 

constructed from whole sets of eigenvalues & eigenvectors or 

eigenvalues & eigenfunctions. In this scenario, Theta Criteria methods 

are more optimal for multivariate applications than existing methods. 

We studied the Theta Criteria in detail and found these methods to be 

more precise and accurate than existing methods [9], [10]. 

 

Let us assume that Spectral Theorem conditions are fulfilled and 

symmetrical operator / matrix R  can be diagonalized. Also, 

orthonormalized basis of R exists consisting of its eigenvectors.  

In addition, each eigenvalue of R  is real.  

Let R  and R̂ be symmetrical matrices or operators. Let us construct 

set of criteria  nkjikiiji ,1,,  )ˆ(Θ),ˆ(Θ),ˆ(ΘΘ ...  RR,RR,RR, , which can 

converge on ),(),,( 22   XXX LL . Such criteria will reflect the 

geometrical changes on some the elements of 1Ψ , 2Ψ … or nΨ .  
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Let evaluate 1st differences iiiii ee ˆ̂   between weighted 

eigenvectors iie and iiê̂ . Their Euclidean norm, or i criteria 

2ii   can serve as closeness criteria between eigenpairs  ii e, and 

 ii ê,̂   (Figure 1.1.)  Analogously, 
22 jiij     can be ij criteria 

between pairs of eigenpairs  ii e, ,  ii ê,̂  and  jj e, ,  jj ê,̂ . At last, 




n

i in 1,1
   be 

n,1
 criteria on all eigenpairs  niii 1, e .  

 

 
 

Figure 1.1. 
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Theta Criteria Properties 

We have found that Theta Criteria are norms. These methods are 

positive, homogeneous, positively defined and satisfy triangle 

inequality. The Theta Criteria can be transformed to matrix norm and 

trace differences.  

We formulated distinction types hypotheses for positively defined 

matrices R  and R̂ . Then we evaluated accuracy of Theta Criteria and 

RR ˆdetdet   or RR ˆcondcond  for very close matrices and for ill-

defined matrices. Several Theta Criteria were significantly more 

accurate than RR ˆdetdet   or RR ˆcondcond  . Further research is 

required to obtain functional representation between distinction 

hypotheses types and Theta Criteria optimal type(s).  
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Summary 

Existing application for multivariate data set processing, such as 

MATLAB® [1], SAS® [2] and SPSS® [3] utilize Multiple Regression 

Procedure, Discriminant Function Analysis, Canonical Analysis and 

Principle Components Analysis. Those methods are appropriate for 

initial stage of data analysis when distinction hypotheses about 

specific application are not formulated or not adequately described.  

If distinction hypotheses were established, then formal linear algebra 

methods or Theta Criteria can be applied for in-depth application 

analysis.  

The formal linear algebra methods are straightforward by utilizing 

only matrices' eigenvalues. If the application accuracy specifications 

are moderate, then these methods will be sufficient. Regrettably, 

formal linear algebra methods have limited accuracy for complex or 

ill-defined applications. 

If, however, the multivariate application is ill-defined or requires high 

accuracy, then Theta Criteria deserve serious consideration.  
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CHAPTER II   

 

Theta Criteria Formal Study   

                             

 

The Theta Criteria methods for positively defined nn  matrices were 

introduced in [1] - [4]. Those criteria have been constructed on norms 

of differences of matrices ordered weighted eigenvectors. We will now 

study Theta Criteria properties in depth.   

 

2.1. Formal Definitions 

 

Let R is real numbers field, nR -finite linear vector space over R , 

RR 















 i

n

n x

x

x

,,
1

xx  and n x nR -set of all positively defined matrices 

of order n . Let block matrices     n RRRR, ˆrankrank;ˆ n x nR ,

 









2

1

AB

BA
R

T

, 









2AB

BA
R

ˆˆ

ˆˆ
ˆ 1

T

            (1) 

sub matrices 
mjiija ,1,1 ][


A , 

nmjiija ,1,2 ][


A  , 
mjnmiija ,1;,1

][


B  and 
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mjiija ,1,1 ]ˆ[ˆ


A , 
nmjiija ,1,2 ]ˆ[ˆ


A  , 

mjnmiija ,1;,1
]ˆ[ˆ


B .  

Let   
niinii ,1,1

}ˆ{ˆ,}{


  ΛΛ  - sets of all ordered eigenvalues of RR, ˆ : 

njijijiji ,1,,,ˆˆ,   ,            (2) 

and
nii ,1

}{


 eE  and 
nii ,1

}ˆ{ˆ


 eE  sets of all RR, ˆ orthonormalized 

eigenvectors.  

Let  iii e ψ ,  - eigenpair of i  and ie and 
n

i
i

1

 Ψ1Ψ , with 

  niiii ,1,ˆ  ψ,ψ Ψ  ni ,1  - a set of pairs of eigenpairs of i -th 

eigenvalues and eigenvectors of RR, ˆ .  

Let ij

n

ji

Ψ 
1, 

2Ψ ,        njijjiijiij ,1, with ˆ,,ˆ,  ψψψψΨ,Ψ Ψ   be a set 

of two pairs of eigenpairs of i -th and j-th eigenvalues and 

eigenvectors of RR, ˆ  and     nnn
ψψψψΨ ˆ,...ˆ, 11,1

nΨ  has been 

composed on n  eigenpairs nΨΨΨ ,..., 21 .  

       

2.2. Known Matrices Closeness Criteria 

 

The forward differences   of the determinants and condition numbers 

were used as matrices closeness criteria [5] - [9]:   

     


n

i i

n

i i 11
ˆˆdetdet)(det( RRR          (3) 

       nn  ˆˆˆcondcondcond 11  RRR           (4) 
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The   criteria of RR, ˆ  has been introduced in [4]: 

   


n

i iiii1
ˆˆˆΘ eeRR,  .               (5) 

2.3.  The Hilbert Theorem 

 

Let T be a limited linear, self-conjugated integral matrix from space 

),(2 XL  into ),(2 XL and   

),(;),(),(),()(),())(( 2  XKKKT L  fxyyxDyyfyxxf
x

where

),((.,.) 2   XXK L  is the matrix’s kernel. There exist KT,  

representations on orthonormalized matrices of eigenfunctions 

)}({ xi and eigenvalues )}({ xi  of T as follows: 

 

 ),(,),())(( 2  XT Lffxf ii
i

i                                    (6) 

 0,)(),(   iii
i

i xyx K                                              (7) 

The series are converging on norms ),(),,( 22   XXX LL  

respectively [10] - [12].  

 

2.4. Theta Criteria or ΘCriteria Construction  

 

Let construct  criteria between RR, ˆ , or )ˆ( RR, , which can converge 

on ),(),,( 22   XXX LL . Such criteria will reflect the geometrical 
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changes on some the elements of 1Ψ , 2Ψ … or nΨ . The proper choice of 

 criteria depends on a priori information about RR, ˆ structures and 

their distinction type. If all elements of Ψ  have changed, then 

)ˆ( RR,
n1,

 is appropriate choice. If only }ˆ{ ii ψψ , and }ˆ{ jj ψψ , have 

changed, then )ˆ( RR,ij  is acceptable. Now we can formulate several 

hypotheses about matrices RR, ˆ differences. 

 

Hypothesis I: The matrices RR, ˆ distinctions can be represented by 

geometrical differences between iψ and iψ̂  of }ψ{ψΨ , iii ˆ  .  

Then Euclidean norm
2
 of iiiii ee ˆ̂   can serve as  AA ˆ,  or  

22
ˆˆ
iiiiii ee   .                (8) 

Hypothesis II: The matrices RR, ˆ  distinction is represented by 

geometrical differences between }ψ{ψ , ii ˆ and }ψ{ψ , jj ˆ of 

}ˆˆ{ }ψ{ψ},ψ{ψΨ ,, jjiiij  .  

Then the sum of 
2i

  and 
2j

  can serve as  AA ˆ, : 

 

)ˆ( RR, =
2222

ˆˆˆˆ)ˆ( jjjjiiiijiij eeeeRR,      (9) 

 

Hypothesis III: The matrices RR, ˆ  distinction is represented by 

geometrical differences between }ψ{ψ}ψ{ψ}ψ{ψ ,,, nn ˆ...ˆ,ˆ 2211 of 

}}ˆ...ˆˆ{ 2211,1 nnn
ψ{ψ},ψ{ψ},ψ{ψΨ ,,, .  
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Then the sum of 
21 , 

22 …
2n  can serve as )ˆ( RR, :  

21,1 


n

i in
 .       (10) 

According to [9], a real-valued function x  on linear space ,Χ  x  is 

norm  on Χ , if 

0x     (Positivity)    (11)   

yxyx    (Triangle inequality)    (12)   

xx      (Homogeneity)    (13) 

0x  if and only if 0x . (Positive definiteness)  (14) 

 

 

2.5. Theta Criteria Properties  

 

Theorem 1. (Positivity).  

The criteria 0)ˆ(  RR,
ik

. 

 

Proof: From  criteria definition and Euclidean norm properties  

 

.0ˆˆ
22
  

k

ji i

k

ji iiiikj
 ee    

Q.E.D.        

 



14 

Theorem 2. (Triangle inequality)   

If ),
~ˆ(Θ),

~
(),ˆ(

,3,2,1 R,RRR,RR,
kjkjkj

  nnR R,RR,
~ˆ , then 

321   .  

 

Proof: According to )ˆ( AA, definition, 

2
1 ˆˆ

iiii
k
ji ee    ,

2
2

~~
iiii

k
ji ee    ,

2
3

~~
ˆˆ

iiii
k
ji ee    .  

Since nin
iii ,1for  ~,ˆ, Reee , the vectors nin

iiiiii ,1for  ~~
 ,ˆˆ , Reee  . 

Then 
222

~~
ˆˆ~~

ˆˆ
iii

k
jiiiii

k
jiiiii

k
ji eeeeee    . 

Q.E.D. 

 

 

Theorem 3. (Homogeneity): 

   RR,RR ˆˆ,   , where R .      

 

Proof: Since   ,1for  ˆ , and  ˆ, niii
n

ii  RR ee ,  

   


k

ji iiii

k

ji iiiikj 22
ˆˆˆˆˆ, eeeeRR    

Q.E.D. 
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Theorem 4. (Positive definiteness) 

0)ˆ(  RR,
ik

 if and only if RR ˆ .      

     

Proof: Let RR ˆ .  The jk criteria is 
2

ˆˆ


k

ji iiiikj
ee  . The i -th 

component of jk is 

 iiii
i

jk ee ˆ̂  . According to [2], [3] and Hilbert Theorem 

1,niiiii     ,ˆ   ,ˆ ee   and 0Θ ijk . 

Then 0)ˆ(  RR,
ik

 is true, because index i  is arbitrary.   

Let 0ˆˆ)ˆ(
2,
  

k

ji iiiikj
eeRR,  .     

Then we will receive the system of jk   equations 














0ˆˆ

.....

0ˆˆ

2

2

kkkk

jjjj

ee

ee





        

    

with solution j,kiiiii     ,ˆ   ,ˆ ee . According to the Hilbert 

theorem, for each R and R̂ exist unique EΛ,  and  E,Λ ˆˆ .  If 

0)ˆ(  RR,
ik

, then ΛΛ ˆ , EE ˆ and RR ˆ .  

Conclusion: The criteria )ˆ( RR, is a norm on nnR . 
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Theorem 5. (symmetry) 

If  )ˆ( RR,
kj,

  and )ˆ( R,R
kj,

  then '  .   

     

Proof: If R and R̂ switch places in  ˆ , , then '  . 

 

 

Theorem 6. 

If 11 êe  , niii ,2,ˆ  ψψ , then the )ˆ( RR,  is the matrix norm 

difference 

  .ˆˆ
11   RR,         

   

Proof: 

Criteria   


n

i niiiii
ii1 ˆ

11,2,ˆ2
1111

2 11

ˆˆˆˆˆ)ˆ(
ee

ψψ
eeeeRR,  . 

 

 

Theorem 7. 

If niii ,1,ˆ  ee , niii ,1  ,ˆ    then   )ˆtr()tr(ˆ RRRR,  .  

        

Proof:  

From niiiii ,1,  1ˆ ,ˆ  eeee , and niii ,1 ,ˆ    we received: 

nini

n

i ii

n

i iiii
ii

iiii
,1 ,ˆ

,1,  1ˆ ,ˆ11 2
)ˆtr()tr(ˆˆˆ)ˆ(


   RReeRR,

eeee
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CHAPTER III  

Theta Criteria Numerical Study  

 

3.1.  Numerical Experiments Details 

  

Let 









2

1

AB

BA
R

T

, 









2

1ˆ
A0

0A
R  be two positively defined matrices. 

Let construct on R  the sequence Rof symmetrical positively defined 

matrices:       0det ,ˆrank ,rank  ,{ 0   i
N
ii nn} RRRRR , with 

RR 0 , 









2

1

AB

BA
R

i

T
i

i  

.0)ˆΘ(lim ;lim ;10;,1 ,*   R,R0BBB iiii
i

i LINKNiLINK  

Numerical results have been obtained on MATLAB Version 6.5 for 

matrices .10,5,4)(, ii rank RR  Accuracies of algorithms have been 

verified by methods from [6] - [8].  The matrix block linkage LINK and 

sequence R cardinality N  are : 25.0optLINK , 100optN . We assumed 

that iR and R̂  distinction on sequence R can be represented by criteria 

                 . ˆcondcond Rcond  ,ˆdetdet Rdetˆ(
,1,1

 

1 ,1 Ni
i

Ni
i

n

jNiij 
 RRRR)R,R  Δ Δ ,Θ

 The adequate n1,ii  ,Θ  criteria compared with   Rdet Δ and 

  Rcond Δ criteria in logarithmic scale. 
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3.2. Sequence Rof matrices 4)(, ii rank RR  

3.2.1.  2)()( )( ,4)ˆ()( 21  AABRR rankrankrankrankrank i .  

The positively defined matrices R and R̂  are: 









































668180800

80814600

0017470

007030

ˆ,

6681808600156

80814612545

60012517470

156457030

RR  

 

 

Figure 3.2.1. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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3.3.  Sequence Rof Matrices 5)(, ii rank RR  

3.3.1: . 3)rank( ,2)rank( )rank( ,5)ˆrank()rank( 21  AABRR i   

The positively defined matrices R and R̂  are: 

 

























49203715530480132

37156681808600156

53080814612545

48060012517470

132156457030

R

























4920371553000

3715668180800

53080814600

00017470

0007030

R̂  

 

Figure 3.3.1. The results for Θ ,   Rdet Δ and   Rcond Δ . 

3.3.2:   2)rank( ,3)rank( ,2)rank( ,5)ˆrank()rank( 21  AABRR i   
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The positively defined matrices R and R̂  are: 

 

























49203715530480132

37156681808600156

53080814612545

48060012517470

132156457030

R  

























49203715000

37156681000

0014612545

0012517470

00457030

R̂
  

 

 

Figure 3.3.2. The results for Θ ,   Rdet Δ and   Rcond Δ  
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







































1010109108107106105104103102101

910999897969594939291

810898887868584838281

710797877767574737271

610696867666564636261

510595857565554535251

410494847464544434241

310393837363534333231

210292827262524232221

110191817161514131211

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

R

3.4.  Sequence RMatrices 10)(, ii rank RR  

The initial 10 x 10 positively defined matrix R is: 

 









































215.0019.0017.0026.0024.009.309.608.507.00 3.90

19.00127.041.0016.068.008.6024.905.3014.70 5.90

17.0041.0085.0058.0075.0032.4042.206.109.80 2.60

26.0016.0058.00138.041.0025.2026.4018.605.60 6.30

24.0068.0075.0041.40259.09.6039.208.8029.10 5.40

9.308.6032.4025.20  9.6092.0037.155.308.0013.20

9.6024.9042.2026.4039.2037.1566.808.006.0015.60

8.505.306.1018.60  8.805.308.0046.0012.504.50

7.0014.709.80 5.6029.108.006.0012.5074.007.00

3.905.902.60 6.30 5.4013.2015.604.507.0030.10

R

 

Formally, 10 x 10 matrix R is presented below:
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







































1010109108107106105104103102

9109998979695949392

8108988878685848382

7107978777675747372

6106968676665646362

5105958575655545352

4104948474645444342

3103938373635343332

2102928272625242322

11

0

0

0

0

0

0

0

0

0

000000000

ˆ

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

aaaaaaaaa

a

R

3.4.1:  . 9)(,1)( 1, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1. The results for Θ ,   Rdet Δ and   Rcond Δ  criteria.
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







































1010109108107106105104103

91099989796959493

81089888786858483

71079787776757473

61069686766656463

51059585756555453

41049484746454443

31039383736353433

2221

1211

00

00

00

00

00

00

00

00

00000000

00000000

ˆ

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

aa

aa

R

3.4.2:  .8)(,2)( 2, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

Figure 3.4.2. The results for Θ ,   Rdet Δ and   Rcond Δ  criteria. 
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







































1010109108107106105104

910999897969594

810898887868584

710797877767574

610696867666564

510595857565554

410494847464544

333231

232221

131211

000

000

000

000

000

000

000

0000000

0000000

00`00000

ˆ

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

aaa

aaa

aaa

R

3.4.3:  .7)(,3)( 3, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 
Figure 3.4.3. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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







































1010109108107106105

9109998979695

8108988878685

7107978777675

6106968676665

5105958575655

44434241

34333231

24232221

14131211

0000

0000

0000

0000

0000

0000

000000

000000

000000

000000

ˆ

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaaa

aaaa

aaaa

aaaa

R

3.4.4. 

 . 6)(,4)( 4, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

Figure 3.4.4. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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







































1010109108107106

91099989796

81089888786

71079787776

61069686766

5554535251

4544434241

3534333231

2524232221

1514131211

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

ˆ

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

R

3.4.5. . 5)(,5)( 5, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

  

 

 

 

 

 

 

 

Figure 3.4.5. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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







































1010109108107

910999897

810898887

710797877

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

000000

000000

000000

000000

0000

0000

0000

0000

0000

0000

ˆ

aaaa

aaaa

aaaa

aaaa

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaaaaa

R

3.4.6. . 4)(,6)( 4, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

Figure 3.4.6. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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







































1010109108

9109998

8108988

77767574737271

67666564636261

57565554535251

47464544434241

37363534333231

27262524232221

17161514131211
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000
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aaaaaaa
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aaaaaaa

R

3.4.7:  . 3)(,7)( 3, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

 

Figure 3.4.7. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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
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3.4.8.  . 2)(,8)( 2, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

Figure 3.4.8. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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3.4.9:  . 1)(,9)( 1, )( ,10)ˆ()( 21  AABRR rankrankrankrankrank  

Let R̂ will be 10-dimensional correlation matrix:  

 

 

 

 

 

 

 

 

 

 

Figure 3.4.9. The results for Θ ,   Rdet Δ and   Rcond Δ . 
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Table 1. 

 Criteria Type Interval Criteria graphical description 

3.2. Sequence Rof matrices 4)(, ii rank RR  

3.2.1. 2rankrank;4rank 21  RRR  

 RR, ˆΘ1  (1, 100) (1, 100)- Convex decreasing curve; 

 RR, ˆΘ2  (1, 100) (1, 100)- Convex decreasing curve; 

 RR, ˆdet  (1, 12) (1, 12) - Segment of Convex decreasing curve; 

(12, 100) - Segment of Horizontal line 

 

 RR, ˆcond  (1, 12) (1, 12) - Segment of Convex decreasing curve; 

(12, 100) - Segment of Horizontal line 

3.3. Sequence R  Matrices 5)(, ii rank RR  

3.3.1. . 3)rank( ,2)rank( )rank( ,5)ˆrank()rank( 21  AABRR i  

 RR, ˆΘ1  [1,20], 

[25,100] 

2 segments of convex decreasing curve with 

small horizontal plateau (20,25) in the interval 

 RR, ˆΘ2  [1,23], 

[25,100] 

2 segments of convex decreasing curve with 

small horizontal plateau (23,25) in the interval 

 RR, ˆdet  (1, 12) (1, 12) - Segment of Convex decreasing curve; 

(12, 100) - Segment of Horizontal line 

 

 RR, ˆcond  (1, 12) (1, 12) - Segment of Convex decreasing curve; 

(12, 100) - Segment of Horizontal line 

3.3.2:  2)rank( ,3)rank( ,2)rank( ,5)ˆrank()rank( 21  AABRR i  

 RR, ˆΘ2  (1, 100) (1, 100) - Convex decreasing curve 

 RR, ˆΘ5  (1,20) (1, 20) - Segment of Convex decreasing curve; 

(20, 100) - Segment of Horizontal line 

 RR, ˆdet  (1, 12) (1, 12) - Segment of Convex decreasing curve; 

(12, 100) - Segment of Horizontal line 

 

 RR, ˆcond  (1, 12) (1, 12) - Segment of Convex decreasing curve; 

(12, 100) - Segment of Horizontal line 
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3.4.  Sequence R  Matrices 10)(, ii rank RR  

3.4.1: 9rank;1rank;10rank 21  RRR  

 RR, ˆΘ1  (1,50) (1,50) - Convex decreasing curve; 

(50, 100) -Horizontal line 

 RR, ˆΘ2  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

 RR, ˆdet  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

 

 RR, ˆcond  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

3.4.2: 8rank;2rank;10rank 21  RRR  

 RR, ˆΘ1  (1,50) (1,50) - Convex decreasing curve; 

(50, 100)-Horizontal line 

 RR, ˆΘ2  (6,20), 

(50, 

100) 

(1,5)  - Segment of horizontal line; 

(6,20) - Segment of  Convex 

decreasing curve; (20,50)  - Segment 

of horizontal line; (50,100) - Segment 

of  Convex decreasing curve 

 RR, ˆdet  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

 

 RR, ˆcond  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

3.4.3: 7rank;3rank;10rank 21  RRR  

 RR, ˆΘ4  (1,40) (1,40) - Convex decreasing curve with 2 small 

segments of horizontal line; (40, 100) -

Horizontal line 

 

 RR, ˆΘ5  (20, 

100) 

(1, 20) - Segment of horizontal line; (20,100) - 

Convex decreasing curve with 2 small 

segments of horizontal line; 
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 RR, ˆdet  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

 RR, ˆcond  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

3.4.4: 6rank;4rank;10rank 21  RRR  

 RR, ˆΘ1  (10, 

100) 

(10,100) - Segment of Convex decreasing 

curve with 4 small segments of horizontal 

line; (40, 100) -Horizontal line 

 RR, ˆΘ5  (1,50) (1,50) - Segment of Convex decreasing 

curve; (50, 100) - Segment of horizontal line; 

 RR, ˆdet  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 

 

 RR, ˆcond  (1,25) (1,25) - Segment of Convex decreasing 

curve; (25,100) - Segment of Horizontal line 
 

3.4.5: 5rank;5rank;10rank 21  RRR  

  RR, ˆΘ7  (1,100) (1,100) - Segment of Convex 

decreasing curve with 4 small 

segments of horizontal line 

  RR, ˆdet  (1,25) (1,25) - Segment of Convex 

decreasing curve; (25,100) - 

Segment of Horizontal line 

  RR, ˆcond  (1,25) (1,25) - Segment of Convex 

decreasing curve; (25,100) - 

Segment of Horizontal line 

3.4.6: 4rank;6rank;10rank 21  RRR  

  RR, ˆΘ6  (1,55) (1,55) - Segment of Convex 

decreasing curve with 2 small 

segments of horizontal line; 

(55,100) - Segment of Horizontal 

line 
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  RR, ˆdet  (1,25) (1,25) - Segment of Convex 

decreasing curve; (25,100) - 

Segment of Horizontal line 

  RR, ˆcond  (1,25) (1,25) - Segment of Convex 

decreasing curve; (25,100) - 

Segment of Horizontal line 

3.4.7: 3rank;7rank;10rank 21  RRR } 

  RR, ˆΘ1  (1,50) (1,50) - Segment of Convex 

decreasing curve with 2 small 

segments of horizontal line; 

(50,100) - Segment of Horizontal 

line 

  RR, ˆdet  (1,25) (1,25) - Segment of Convex 

decreasing curve; (1,100) - 

Segment of Horizontal line 

  RR, ˆcond  (1,25) (1,25) - Segment of Convex 

decreasing curve; (1,100) - 

Segment of Horizontal line 

3.4.8: 2rank;8rank;10rank 21  RRR  

  RR, ˆΘ5  (20,45), 

(60,100) 

(1,20) - Segment of Horizontal 

line; (20,45) - Segment of 

Convex decreasing curve; 

(45,60) Segment of horizontal 

line; (60,100) - Segment of 

Convex decreasing curve 

  RR, ˆΘ7  (1,50) (1,50) - Segment of Convex 

decreasing curve with 3 "wild 

points"; (50,100) - Segment of 

Horizontal line 

  RR, ˆdet  (1,25) (1,25) - Segment of Convex 

decreasing curve; (1,100) - 
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Segment of Horizontal line 

  RR, ˆcond  (1,25) (1,25) - Segment of Convex 

decreasing curve; (1,100) - 

Segment of Horizontal line 

3.4.9 1rank;9rank;10rank 21  RRR  

  RR, ˆΘ9  (15,100) (1,15) - Segment of Horizontal 

line; (15,100) - Segment of 

Convex decreasing curve 

  RR, ˆdet  (1,25) (1,25) - Segment of Convex 

decreasing curve; (1,100) - 

Segment of Horizontal line 

  RR, ˆcond  (1,25) (1,25) - Segment of Convex 

decreasing curve; (1,100) - 

Segment of Horizontal line 
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3.5. The matrices block linkage LINK  and R̂det  are variable 

 

Let’s construct two sequences of matrices:  

 =  NK
11}{ ikR  with 

2ikik RR detdet
1
 , if 21 kk  , Kkk ,1, 21  , 

10;,1,*  LINKNiLINK i
i BB . Then 

.0)ˆΘ(lim and lim   R,R0B iiii .                     

 and  

̂ =   K
1}ˆ{ kR    

where 

          Rik  = 








2ik

T
ik1k

AB

BA
, 










2

1k
k A0

0A
R̂  

with  
2kk RR detdet

1
 and 

2kk RR ˆdetˆdet
1
 , if 21 kk   , Kkk ,1, 21  . 

Let construct the response functions FΘ , Rdet F  and R condF  on surface 

( LINK , R̂det ) for )ˆ   (  Θ 1 R,R i , Rdet  and Rcond .  

FΘ    = F ( LINK , R̂det , )ˆ   (  Θ 1 R,R i ),   LINK  {10-16, 100}, R̂det  

{107, 1013}.    

The 
)R(R,1

F ˆ
 presented as contours on Fig. 4, Rdet F  - on Fig. 5 and 

R condF  - on Fig. 6.  
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Table 2. 

Criteria  

Type 

 LINK  

Correct 

Region  

Det R  

Correct

Region 

Incorrect 

Region 

for LINK  

Det R  

Incorrect 

Region  

Criteria 

Slope  

)ˆ   (  Θ 1 R,R i  

(-14, -3) (6, 13)  None None 1 

Rdet   (-14, -1.5) (6, 13)  None None 2 

Rcond   (-10, -1.5) (8, 13) (-13, -10) (6.5, 10) 2 
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Conclusions for Numerical Experiments 

 

1. For det R1  = const and LINK = Var: 

o Criteria )ˆ   (  Θ1 R,R i  correctly represented matrices linkage 

decrease process for all iterations for 3.2.1, 3.3.1, Cases. 

o Criteria )ˆ   (  Θ2 R,R i  correctly represented matrices linkage 

decrease process for all iterations for 3.3.1, 3.3.2 Cases. 

o Criteria )det(( R ,   Rcond  adequately represented 

process only for 10 first iterations for all 3.4. Cases. 

o There are several Theta Criteria, applicable for 3.4. Cases. 

They are better in accuracy than )det(( R ,   Rcond .  

o In all of our experiments exists at least one Θ criteria 

with superior accuracy to )det(( R  and   Rcond  for 

identification of very weak linkages between matrices. 

  

2. For det R1  = Var, LINK = Var : 

a. The criteria )ˆ   (  Θ 1 R,R i  is correct for the whole domain 

with constant slope m = 1. 

b. The criteria Rdet is very steep and can be used for the 

whole domain. 

c. The criteria Rcond  was incorrect for small LINK .  

d. The Θ  criteria have a tremendous potential for 

improving accuracy in analysis of multi-dimensional 

objects and systems. 
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CHAPTER IV 

Applications 

 

4.1. Preliminary Conditions 

 

Let us specify preliminary conditions for Theta Criteria usage: 

 

 Standard Statistical Regression Analysis has been performed. 

 Accuracy of Standard Statistical Regression Analysis is inadequate. 

 Application can be described by set of multiple variables. 

 The application data accuracy is suitable for evaluation of its 

spectral characteristics.  

 Available statistical or mathematical software tool to evaluate 

eigenvalues and eigenvectors.   

 

We will now discuss various application areas for Theta Criteria. 
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4.2. IED Identification 

Improvised Explosive Devices (IED) are made from 5 basic types of 

plastic explosives: C-4, PENO, Primasheet, RDX and Semtex. The IED 

can also be made using over-the-counter chemicals: aspirin, phenol, 

bleach, pool chorine compound, etc. These explosives are concealed 

underground, inside metal structures or strapped to human body. 

 

Regrettably, existing identification methods do not have the desired 

accuracy to detect IED. We proposed our recommendation for  

IED identification to U.S. Department of Defense (DoD). 

 

4.3. Aircraft Engine Failure Identification  

Theta Criteria can be used for Aircraft Engine Failure Identification. 

Implementation details are available upon request. 

 

4.4. Medical Applications  

Theta Criteria can be used for identification and therapy of various 

diseases, disorders and illnesses. Implementation details are available 

upon request. 

 

4.5. Financial Problems Analysis  

Theta Criteria can be used for Financial Application Analysis.  

Implementation details are available upon request. 
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