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Introduction

In this book we will describe Theta Criteria properties and their

application areas.

Theta Criteria are based on operator's theory and matrices
decompositions. The main idea is to evaluate differences between

sets of operators' eigenvalues & eigenvectors or eigenfunctions.

Theta Criteria will lead to more efficient analysis, optimization and
prognosis of multivariate systems and applications. Theta Criteria can
be used for data set mining and image processing. The book is

designed as a complementary tool for applied mathematics methods.

We assume the Reader has standard undergraduate knowledge of
advanced calculus, matrix theory, operator theory, approximation

methods and measure theory.
The book consists of Introduction and four Chapters.

In Chapter I we briefly review existing methods and software
packages for multivariate systems analysis. These methods are based

upon Multivariate General Linear Hypothesis (MGLH).

In line with MGLH, all dataset variables are linear, additive and

relationships models are linear series of weighted terms.

We also mention the following methods: Multiple Regression,

Discriminant Function Analysis, Canonical Analysis, Principle



VIII

Components Analysis and formal linear algebra methods. Lastly, we
discuss our methods, Theta Criteria, which are constructed on norms

of weighted differences of matrices ordered eigenvectors.

In Chapter II, we placed our main formal results. At this moment we

considered only positively-defined matrices.

In Chapter III we have numerically studied Theta Criteria on sets of
varied matrices. We compare Theta Criteria accuracy with existing

matrices' norms and invariants.
In Chapter IV, we briefly discuss Theta Criteria application areas.

At this moment we are only able to "scratch the surface" of Theta
Criteria universe. We are convinced that our methods will find their

places in various complex applications.

We express our gratitude to Academic Vladimir Skurichin

(Ukrainian Academy of Science) for his guidance.
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Notation

R is real numbers field
R"-finite linear vector space over R

R"*" -set of all positively defined matrices of order n

T A nT
R’ﬁeRnx”; rank(R): rank(f{)z n ,R:|:‘;l i :|, li=|:Al B :| }
2

block matrices

A=yl A =81 s - B=18y ] o - sub matrices

A ~ A

A={4} A= {ﬂ:i Vi - sets of all ordered eigenvalues of R,R,

i=1,n’
A

A>A ., A>A, i<j, Vij=Ln

E={e} —, E= {é.}. — sets of all R,R orthonormalized eigenvectors
1 I l’n

i=1,n i=

v, = {4.e,} - i-th eigenpair of 4, and e,

io™i

W, =YY, ¥ ={y,¥Li=1n -asetof i-th eigenpairs v,,{, of R,R

i=1

W,= %Tij’ ¥, = {Tis‘l'j}z {{‘I’i"i’i}’{‘l’ja\ilj}}Withi, j :I,_n - a set of two

ij=1
pairs of eigenpairs ¥;,'¥; of R,R

Y, =¥, = w0, ) {w,, W, }} be asetof n eigenpairs ¥,,'¥,,.."¥,
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detR - determinant of matrix R

condR - condition of matrix R

© - Theta Criteria

T - limited linear, self-conjugated integral matrix from space L, (X, x)
into L,(X, u)

K(.,.)eLl,(XxX, ux u) - matrix’s kernel

| |, - Euclidean norm

LINK - linkage coefficient between matrices blocks

R={R,}",, rank(R)=n, rank(ﬁ): n, det(R,)> 0 - the sequence of

symmetrical positively defined matrices

A(det(R)) - forward difference of the determinants of R,R

A(cond(R)) - forward difference of the condition numbers of R,R
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CHAPTER

Existing Methods for Multivariate Data Processing
There are three major mathematical and statistical software packages to
process multivariate data:

= MATLAB® [1]

= SAS® [2]

= SPSS® [3]

These software packages are based on Multivariate General Linear
Hypothesis (MGLH) [4]:

* All dataset variables are linear

= Additive

* Relationships models are linear series of weighted terms.

The MGLH is implemented using the following procedures:

* Multiple Regression

* Discriminant Function Analysis
* Canonical Analysis

* Principle Components Analysis

* Formal linear algebra methods

We will now discuss these procedures in detail.



Multiple Regression Equation

y=bix1+bxo+ .. +baxntc

In this equation, y is a dependent variable, b; - regression coefficients
and x; - independent variables. This equation evaluates y variance
proportion at a significant level and x; relative predictive importance.
This method evaluates dependent variable based on independent

variable values.

Discriminant Function Analysis

This method determines which variables discriminate between two or

more groups on covariance matrix of group variances and

co-variances. Then one of the test statistics for eigenvalue analysis,
such as Wilks' Lambda, is used. This method is identical to
multivariate analysis of variance or MANOVA. For several groups,

additional Discriminant functions can be used.

Canonical Analysis

This method uses optimal variables combination for multiple group
Discriminant analysis. The first function is the most informative
description, the second is second most, and so on. The functions ought
to be independent or orthogonal. The canonical correlation analysis is

based primarily on canonical roots or eigenvalues.



Factor Structure Method

This method analyzes correlations of variables and interpretes the
Discriminant functions' values. This method places heavy emphasis on

results interpretation and will not be reviewed here.

Principle Components Analysis (PCA)

This method has been used to estimate the dataset variance in terms of
principle components. The method goals are to reduce data
dimensionality, define the most informative components and noise
filtering. The standard normalization procedure removes noise,
stabilizes the data. Regrettably, this method has limited efficiency as
data structure identification tool. The PCA defines mutually-
orthogonal or uncorrelated projections set. For square and symmetric
matrix with ordered eigenvalues, the first principal component
direction coincides with 1st eigenvector direction. The second
principal component direction coincides with direction of 2nd
eigenvector direction. The procedure iterates until satisfactory

accuracy has been achieved.

For symmetric matrix, the eigenvalue and eigenvectors can be found
by a Householder reduction procedure and QL algorithm. For
non-square or non-symmetric data matrix A, the singular value
decomposition U V' of A can be formed. Here matrix V contains the
eigenvectors, and the squared diagonal matrix U contains the

eigenvalues [5], [6].



Formal Linear Algebra Methods

These methods use various norms, determinant, trace and condition to
evaluate the matrices distance. Nearly all of those criteria can be

represented as various functions of eigenvalues [7], [8].

Theta Criteria

According to Spectral and Hilbert Theorems, the whole sets of
eigenvalues & eigenvectors or eigenvalues & eigenfunctions fully
describe matrix or operator. Our methods (Theta Criteria) are
constructed from whole sets of eigenvalues & eigenvectors or
eigenvalues & eigenfunctions. In this scenario, Theta Criteria methods
are more optimal for multivariate applications than existing methods.
We studied the Theta Criteria in detail and found these methods to be

more precise and accurate than existing methods [9], [10].

Let us assume that Spectral Theorem conditions are fulfilled and
symmetrical operator / matrix R can be diagonalized. Also,

orthonormalized basis of R exists consisting of its eigenvectors.

In addition, each eigenvalue of R is real.

Let R and R be symmetrical matrices or operators. Let us construct
set of criteria © = {@i(R,IA{),(By(R,lA{),G)i_“k (R,R)} [, j, k= 1,n, which can
converge on L, (X, u), L,(X x X, ux u). Such criteria will reflect the

geometrical changes on some the elements of ¥, ¥, ... or ¥ .



Let evaluate 1st differences ¢, = 1e, — 1.é. between weighted
eigenvectors 4.e,and A&, . Their Euclidean norm, or @, criteria
0, = ||(pl|| , can serve as closeness criteria between eigenpairs {4,.e, Jand

{/ii,él.} (Figure 1.1.) Analogously, ©, =|¢,], +H(ij2 can be O, criteria

A

between pairs of eigenpairs {4,,e,}, {/ii,éi} and {ij,ej}, {l.,éj } At last,

J

O = Z;”(”i” be @1; criteria on all eigenpairs {/1,-’3,- }7

Ln =1"

Figure 1.1.



Theta Criteria Properties

We have found that Theta Criteria are norms. These methods are
positive, homogeneous, positively defined and satisfy triangle
inequality. The Theta Criteria can be transformed to matrix norm and
trace differences.

We formulated distinction types hypotheses for positively defined
matrices R and R . Then we evaluated accuracy of Theta Criteria and

det R —det IA{‘ or ‘cond R —cond li‘ for very close matrices and for ill-

defined matrices. Several Theta Criteria were significantly more

accurate than ‘det R —det li‘ or ‘cond R —cond li‘ . Further research is

required to obtain functional representation between distinction

hypotheses types and Theta Criteria optimal type(s).



Summary

Existing application for multivariate data set processing, such as
MATLAB® [1], SAS® [2] and SPSS® [3] utilize Multiple Regression
Procedure, Discriminant Function Analysis, Canonical Analysis and
Principle Components Analysis. Those methods are appropriate for
initial stage of data analysis when distinction hypotheses about

specific application are not formulated or not adequately described.

If distinction hypotheses were established, then formal linear algebra
methods or Theta Criteria can be applied for in-depth application

analysis.

The formal linear algebra methods are straightforward by utilizing
only matrices' eigenvalues. If the application accuracy specifications
are moderate, then these methods will be sufficient. Regrettably,
formal linear algebra methods have limited accuracy for complex or

ill-defined applications.

If, however, the multivariate application is ill-defined or requires high

accuracy, then Theta Criteria deserve serious consideration.
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CHAPTER II

Theta Criteria Formal Study

The Theta Criteria methods for positively defined n x n matrices were
introduced in [1] - [4]. Those criteria have been constructed on norms
of differences of matrices ordered weighted eigenvectors. We will now

study Theta Criteria properties in depth.

2.1. Formal Definitions

Let R is real numbers field, R" -finite linear vector space over R,

xl
xeR", & x=|: |,.x,eR andR"*" -set of all positively defined matrices

X

n

of order n. Let block matrices R,R € R™*"; rank (R) = rank (ﬁ): n,

A BT R A D7
R-|d B | oA B (1)
B A, B A,

sub matrices A, =[al.j]i,j:m, A, =la,] , B =[al.j]i:mj:1’—m and

i,j=m+l, n
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A

_[ l]]z j=l,m’ = [&ij ]i,j:mT,n s D= [&ij ]i:mT,n;j:ﬁ :
Let A={4} . A= A={A i}, - sets of all ordered eigenvalues of R,R:
A>A ., A>A, i<j, Vij=Ln, @)

and E={e;} — and E= {e,} - setsof all R, R orthonormalized

eigenvectors.

Let v, = {1,e,} - eigenpair of 1, and e,and ¥, U‘I’ with

i
i=1

¥, ={y,, W, hi=1n i=1n -asetof pairs of eigenpairs of i-th

1

eigenvalues and eigenvectors of R,R.

Let ¥, = U‘I’U, {‘I’i,‘l’ } {{ R {w],w]}}wuhz j=1Ln beaset

i,j=1

of two pairs of eigenpairs of i-th and j-th eigenvalues and

eigenvectors of R,R and ¥, =¥, ={w,. ¥, }..{w,. ¥, }} has been

composed on #n eigenpairs ¥,,%¥,,.."Y,,.

2.2. Known Matrices Closeness Criteria

The forward differences A of the determinants and condition numbers

were used as matrices closeness criteria [5] - [9]:
A(det(R) =|det(R) - det(R | = ‘H -T1.. ‘ 3)

A(cond(R))z‘cond(R) cond l ‘/L JA,— 4/ /1‘ (4)
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The © criteria of R,R has been introduced in [4]:

@(R,ﬁ)= Z; H/ll.el. = /il.él.H . (5)

2.3. The Hilbert Theorem

Let T be a limited linear, self-conjugated integral matrix from space

L, (X, u) into L, (X, ¢) and

(Tf)(x) = fK(x, V) Nu(Dy), K(x,y)=K'(y,x); f € L,(X, u) where

K(.,.) e L,(XxX, g x u) is the matrix’s kernel. There exist T,K
representations on orthonormalized matrices of eigenfunctions

{.(x)} and eigenvalues {4,(x)} of T as follows:

AN =Y A0 f LX) ©)
K(x,y) = Zﬂi¢i (x)¢i,’ A4 #0 7)

The series are converging on norms L, (X, ), L, (X x X, ux )

respectively [10] - [12].

2.4. Theta Criteria or O Criteria Construction

Let construct O criteria between R,ﬁ ,or O(R, f{), which can converge

on L,(X,u), L,(X x X, uxu).Such criteria will reflect the geometrical
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changes on some the elements of ¥, ¥, ... or ¥, . The proper choice of
@ criteria depends on a priori information about R,R structures and
their distinction type. If all elements of ¥ have changed, then

O, (R, R) is appropriate choice. If only {w,.;}and {y .y }have
changed, then 0, (R, R) is acceptable. Now we can formulate several

hypotheses about matrices R,R differences.

Hypothesis I: The matrices R,R distinctions can be represented by

geometrical differences between y,and , of ¥, ={y,.\,}.

Then Euclidean norm || ||2 of o, = Ae, — 1., can serve as @(A,A) or

0, = ||¢i ”2 = Hj’iei _iiéi

(8)

2
Hypothesis II: The matrices R,R distinction is represented by

geometrical differences between {y .\, }and {y .y} of
‘Pij = {{‘l’i’\i\li}9{\|’j"i’j}} .
Then the sum of ||(pi||2 and ngjuz can serve as ®(A,A):

dle —4é

o JJ

®(Rali) = ®g,- (Raﬁ) = ”(Pi ”2 + H(DJ H2 = “;tiei _j“iéi

+
2

©)

2

Hypothesis III: The matrices R,R distinction is represented by

geometrical differences between {y,.y,},{w,.¥,}..{w,. ¥, } of

‘an = {{‘Vl’\i’l}9{“’2’\?’2}""{\""""\1”}} )
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Then the sum of ||(p1

n
05 -3
L,n i=1

According to [9], a real-valued function ||x|| on linear space X, xe X is

(p2||2 .- |@,|l, can serve as @(R,ﬁ):

2/

2 ”2 (10)

norm on X, if

x| >0 (Positivity) (11)
||x + y|| > ||x|| + || y|| (Triangle inequality) (12)
||ax|| = |a|||x|| (Homogeneity) (13)
||x|| =0 if and only if x = 0. (Positive definiteness) (14)

2.5. Theta Criteria Properties

Theorem 1. (Positivity).

The criteria ©- (R, ﬁ) >0.

Proof: From O criteria definition and Euclidean norm properties

k
®j} 221’:]’

Q.E.D.

Ae, — /il.él.uz = le;,”% ||2 > 0.
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Theorem 2. (Triangle inequality)
If 6, =®E(R,li), 0, =0 (R,R), 0, =@j7(1i,ﬁ), R,R,R € R™", then

6,+60,=20,.

Proof: According to O(A, A) definition,

e —Ae L

01 = Zf:j

3 A Nk T~ Nk
/liei _//tiei“z /‘92 - zi:ju/liei _/11‘ eiH2/03 - Zi:j

Since e, e, € €R" for Vi =1,n, the vectors Ae,, 1€, L€ eR" forVi=1n.

Then X e, —AE| .

2

ﬁ“iei _ﬁ“iei

k T~
Lt Zi:juﬂ.iei -Ae

k
2 = Zi:j

Q.E.D.

Theorem 3. (Homogeneity):
®(aR,aR): |a|®(R,ﬁ), where o eR.

Proof: Since e,,é, € R" and A, A eRforVi=1n ,

k
=2l
2 i=J

© ; (aR, af{) = Zf:j Haﬂiei —alé,

Ae, — ﬂ,l.eiuz

Q.E.D.
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Theorem 4. (Positive definiteness)

O-(R,R) =0 if and only if R=R.

Proof: Let R=R. The ©  criteriais © ; = Z Ae, — A8,

- The i-th

k
i=j
component of O , is

®jki = Le, — Aé,. According to [2], [3] and Hilbert Theorem
A =4, e =&, Vi=Ln and ©, =0.

Then ©- (R, R) = 0 is true, because index i is arbitrary.

=0.

2

Let O (R,R) =Y [1e - 48,

Then we will receive the system of k — j equations

A

le —Ae

T T

=0

2

with solution 4. =4, e =é., Vi= k. According to the Hilbert
theorem, for each R and R exist unique {A,E} and {/\I;' } If
®%(R,1A1)=O,then A=A,E=Eand R=R.

Conclusion: The criteria O(R,R)is a norm on R™"
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Theorem 5. (symmetry)
If =0_(R,R)and ¢'=0-_(R,R) then § = 0.

Proof: If R and R switch places in 6,6, then 6=

Theorem 6.
If e, =&, y, =V, i = 2,n, then the O(R,R) is the matrix norm
difference

o[RR)=|z, - 4|

Proof:

A

Criteria O(R,R) =" |4¢, - 4¢, Py

2 - H//Llel B qul 2 "’tE‘i’f’i:ﬁ: e, =¢,

Theorem 7.

Ife =e,i=ln, 4 Zﬂ;, Vi=1,n then @(R,li)ztr(R)—tr(li).

Proof:

From e, =e,, el.||:||éi||:1 ,i=ln,and A, = ﬂ:[, i = 1,n wereceived:

_ =tr(R)—tr(R)

ey e |-Jo -1 it

ORR)=Y" [4e,-48| = |2 -4

22 i=1,n
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CHAPTER III

Theta Criteria Numerical Study

3.1. Numerical Experiments Details

A, B'] ~ [A 0 . . .
Let R= , R= be two positively defined matrices.
B A, 0 A,

Let construct on R the sequence Rof symmetrical positively defined

matrices: R = {R,}",, rank(R)=n, rank(ﬁ): n,det(R,)> 0, with

A, B/
R,=R,R =
B, A,

B, =LINK' *B, i=1,N; 0< LINK <1;lim__ B, =0;lim,__ ©(R,,R) =0.

Numerical results have been obtained on MATLAB Version 6.5 for
matrices R,,rank(R;) =4,5,10. Accuracies of algorithms have been

verified by methods from [6] - [8]. The matrix block linkage LINK and
sequence Rcardinality N are : LINK,,=0.25,N,, =100. We assumed

opt

that R,and R distinction on sequence Rcan be represented by criteria

O= {{@j. (R, ,li)}i:w };:1 , Adet(R)= {det(Ri ) - det(ﬁ]}fzﬁ , Acond(R)= {cond(Ri )— cond(li]}i I

The adequate ©,,i=I,n criteria compared with A det(R) and

A cond(R) criteria in logarithmic scale.
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3.2. Sequence Rof matrices R,,rank(R,) =4

3.2.1. rank(R)= rank(ﬁ) =4,rank(B,) =rank(A,) = rank(A,)=2 .

The positively defined matrices R and R are:

30 70 45 156 30 70 O 0
R- 70 174 125 600 Ro 70 174 0 0

45 125 146 808 | ° 0 0 146 808

156 600 808 6681 0 0 808 6681

1l]Groups 12 & 34; THETAT, det, cond in log scale n=5 link=0.25 lterations=100
10 . .

T

¢
0 & &
10 B Rxgo .
w®
B Di
ol D, O

ng>b%$?ﬁf,mﬁxﬁww?;m'

1 D~20 |

10-30 |

0%t

10}

pentagram -THETAT1, diamond -det, > -cond

10-300 ) ) ,,,,,,,1 ) I T I
10 10 10

lterations

Figure 3.2.1. The results for ©, Adet(R) and A cond(R) .



3.3. Sequence Rof Matrices R,,rank(R,) =5

3.3.1: rank(R)=rank(R)=35, rank(B,) =rank(A,) =2, rank(A,) =3.

The positively defined matrices R and R are:

30 70 45 156 132] 13 70 o0 0 0
70 174 125 600 480 70 174 0 0 0
R=| 45 125 146 808 530 |R=| 0 0 146 808 530
156 600 808 6681 3715 0 0 808 6681 3715
132 480 530 3715 4920 0 0 530 3715 4920 |

Groups 12 & 345; THETA1 THETAZ, det, cond in log scale n=5 link=0.25 lterations=100

10 : Akl et et e

10" ¢ o, -

o 4
¥ e
. o

0% = %
= 10 ¢ ) 3 *?7 % g N 00@ |
g M ¥ mgigngmwwpmw —
5 40" /‘}{3{} Fn
2 10 Q{/ )
= %&% o,
= T
% 10"
I
=
<
< -30
< 107
I
15}
i
2
Bl [

1™t

m.eno . ) L . . o -

10 10 e

lterations

Figure 3.3.1. The results for @, Adet(R) and Acond(R) .

3.3.2: rank(R) = rank(R) = 5, rank(B,) = 2, rank(A, ) = 3, rank(A ) = 2
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The positively defined matrices R and R are:

30
70
45
156
132

70
174
125
600
480

45
125
146
808
530

156

600

808

6681
3715

132 |
480
530
3715

4920 |

30 70 45 0 0
70 174 125 0 0
R=| 45 125 146 0 0
0 0 6681 3715
0 0 3715 4920

Groups 123 & 45; THETA4, THETAS, det, cond n=5 link=0.25 Iteration =100

THETA4, THETAS,det, cond
5]

-40

10—50 L

10—60

10

T
* i
Tk
% X X
R X
R R
i X
¥ 0
= -’.<>_<>_<)(>< 4
B g A
< THETA4
x  THETA5
% COND
% DET
1
° 10’ 10°
Iteration

Figure 3.3.2. The results for ©, Adet(R) and A cond(R)



3.4. Sequence RMatrices R,,rank(R,) =10

The initial 10 x 10 positively defined matrix Ris:

7.00
4.50

5.40
6.30
2.60
5.90
3.90

[30.10

15.60
13.20

7.00
74.00
12.50
6.00
8.00
29.10
5.60
9.80
14.70
7.00

4.50
12.50

46.00

8.00
5.30
8.80
18.60
6.10
5.30
8.50

15.60
6.00

8.00

66.80
37.15
39.20
26.40
42.20
24.90
9.60

13.20 5.40
8.00
5.30
37.15
92.00
9.60
25.20
32.40
8.60
9.30

29.10
8.80

39.20
9.60

259.0
41.00
75.00
68.00
24.00

6.30

5.60

18.60
26.40
25.20
41.40
138.0
58.00
16.0

26.00

Formally, 10 x 10 matrix R is presented below:

2.60

9.80

6.10

42.20
32.40
75.00
58.00
85.00
41.00
17.00

5.90

14.70
5.30

24.90
8.60

68.00
16.00
41.00
127.0
19.00

10
10
310
Q410
as10
s10
710
Ag10

Ao10

1910 |
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3.90
7.00
8.50
9.60
9.30
24.00
26.00
17.00
19.00
215.00
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3.4.1: rank(R) = rank(R) =10, rank(B) =1, rank(A,) = 1,rank(A,) = 9.

Let R will be 10-dimensional correlation matrix:

:Q
[w)
()
[e)
()
()
[e)
()
()
[w)

0 ay ay ay Gy Ay Ay Ay Ay Ay,
0 ay, ay ay ay ay Gy Ay Ay Ay,
0 a, a; ay a5 a4 a; dai dy  dy
R = 0 a, a5 ay ass as a5 asg a5y dsy
0 ay ag ay a5 4y 4y dg Ay dg,
0 a, a; ay a; Ay a4y dyx 4 dy,
0 ay ay  ay A Ay Ay Ay Ay Ay
0 ay ay ay Ay Ay Ay Ay Ay gy
L 0 ay a Qo Qs Qo G Qg Gige 010
% Matrix closeness measures =f(Submatrices Linkage)
10 , : ——y :
* N + THETAT
Y % %  detDiff
10° F o < normDiff |
‘A'* iz condDiff
*
*
* s
10 *
10 « i
**
- *
g %
s o8
2 %
$10° % i
£ Y
a Yoo
g
2 T+ + + 4+
S 10° + i
g < 2 % g
= +
£ 4 X ty
= < g %
10° | Q%
< ’3(;
<]<]$$
44;3
<
]0'10_
10'15 i
10° 10'
Iterations

Figure 3.4.1. The results for ©, Adet(R) and Acond(R) criteria.
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3.4.2: rank(R) = rank(R) =10, rank(B) =2, rank(A,) = 2, rank(A,) = 8.

Let R will be 10-dimensional correlation matrix:

a, a, 0 0 0 0 0 0 0 0
a, a, O 0 0 0 0 0 0 0
0 0 ay ay a5 ay ay Ay ay  dy
0 0 ay ay as a, ay ag Ay dy
R = 0 0 ay ay as ay a5 4y ds,  agy
0 0 ag ag as 4y Gy Ag Ao g
0 0 an ay a5 a; ay Ay Gy  ay
0 0 ag  ay  ag Ay Ay Ay Ay gy
0 0 ay ay ays Ay Ay Ay Ay Ay
0 0 ag G Gos G G Qg Do Gigno |
% Matrix closeness measures =f(Submatrices Linkage)
10 — — . :
*
*
15 ﬁ * *
10" * 4
* %
e
0| *ﬁﬁ
10 %
10° F
g .o o @ o0 o o @ om»
2 10° i g be + oo
§ bt ®®@®@
0 -5 ﬁ
o 10" pss i
c ped H
g ﬁzkt{}& it
S %
$ 10 e
8 %
5 %X}
= ol
+ THETAT
O THETA2
100k Y detDiff
%z condDiff
107
10-30 L1l

Iteration number

Figure 3.4.2. The results for @, Adet(R) and Acond(R) criteria.

10’
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3.4.3: rank(R) = rank(R) = 10, rank(B) =3, rank(A,) = 3, rank(A,) = 7.

Let R will be 10-dimensional correlation matrix:

0 0 0 ay as a, ay ag Gy ay
R = 0 0 0 a5, a5 ay as; 4y Ay asg
0 0 0 agy as ay ag dg Ay dg
0 0 0 ay a; ay ap ayx ay Ay
0 0 0 ay ay ay ay ay Ay Ay,
0 0 0 ay ay  ay Ay Gy Ay gy
| 0 0 0 ag ays Ao Doy Qs Qe Do ]
2 Matrix closeness measures =f(Submatrices Linkage)
10 T
* % N
15 * *
10 | x4 .
* %
*
*
10" g .
b
10° | % A
8,_3 d O ® O O O COooEEd @ O
100 i 2 + + -
g = %X T oo ®
% L @@@®+
5| £
§ 10 ﬁﬁl}
=
<] o
S RPPRrS 2;‘3‘;3
g 10 e
g
10
102k + THETA1
O THETA2
%  detDiff
105 % condDiff
0% L
10 10
Iterations

Figure 3.4.3. The results for ©, Adet(R) and A cond(R) .



3.44.
rank(R) = rank(ﬁ) =10, rank(B) =4, rank(A,) = 4,rank(A,) =6.

Let R will be 10-dimensional correlation matrix:

a, a, a5 a, 0 0 0 0 0 0
ay,, 4y Gy, a, O 0 0 0 0 0
a, a4y ay ay, 0 0 0 0 0 0
a, Q4 a5 ay, O 0 0 0 0 0

R = 0 0 0 0 a5 a5 a5, ay 4y agy
0 0 0 0 as ay ag ag 4y g
0 0 0 0 ay ay ay ax Gy ay
0 0 0 0 ay ay ay  ay Ay ag,
0 0 0 0 ays ay ay Ay dy  dgy
L 0 0 0 0 a gy Gy G i 010 |
2 Matrix closeness measures =f(Submatrices Linkage)
10 T
¥
15 * * * *
10" * o .
*
**ﬁﬁ
10
10" ﬁ‘;}%ﬁ% i
5
10° | .
B
- X X X XX XXXX XXX o  eee PAUE: ¢ Q) - AN—
S 10° & X J
g 10 % 0% ox L,
© 3 & o S ex, .
s oy ery
2 107 - %y % i
] ﬁt{a
= Wy
< 10-10 itlﬁ
X oy
] %
F s -
10+ THETA4
x  THETAS
% detDiff
102 % condDiff
10%
-30 N N N N N . 1
10% -
10 10
Iteration

Figure 3.4.4. The results for ©, Adet(R) and Acond(R) .
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3.4.5. rank(R)= rank(f{) =10, rank(B) =5, rank(A,) = 5,rank(A,) =5.

Let R will be 10-dimensional correlation matrix:

ay, ap a; a, a; 0 0 0 0 0
Ay Gy Gy Gy a0 0 0 0 0
a4y Ay Ay Ay a0 0 0 0 0
Ay Ay Ay Ay s 0 0 0 0 0
R as, a5, as; as, a4z 0 0 0 0 0
0 0 0 0 0 aq ay ag ao dgo
0 0 0 0 0 a5 ay ay ay ay
00 0 0 0 ay ay ay ay ag
00 0 0 0 ay ay ay ay ag,
_0 0 0 0 0 ag dyy g Ao 010
» Matrix closeness measures =f(Submatrices Linkage)
10 T
*
*
15 * * % *
10 | oy _
* %
**1}
10" F oy |
5
10" S, B
o 0 ¢ (% O <D
8 o o o o o
g 10" % % . 00 oo N
£ oo 000
g 5 o
10" B g |
g %
o Pk
S 4
g 10" ity
= "
©
= s
o O THETA7
¥ detDiff
20 % condDiff
107 F -
102}
-30
10 L
10° 10° 10°

Iteration

Figure 3.4.5. The results for ©, Adet(R) and Acond(R) .



3.4.6. rank(R)= rank(f{) =10, rank(B) =4, rank(A,) = 6,rank(A,) = 4.

Let R will be 10-dimensional correlation matrix:

a, a, a; a, a5 a; 0 0 0 0
Ay Ay Gy Gy Gy Gy 0 0 0 0
ay Ay, Ay Ay 4y a4y 0 0 0 0
Ay Ay Ay Ay Ay g O 0 0 0
R= as; a5, A5y Asy Ass dsg 0 0 0 0
g A dg Ag  Ags deg O 0 0 0
0 0 0 0 0 0 a, ag a, ay
0 0 0 0 0 0 ay ay ay ag
0 0 0 0 0 0 ay ay ay ayy,
L 0 0 0 0 0 0 ay ag dGg oo
» Matrix closeness measures =f(Submatrices Linkage)
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10" | * L i
*
*
*
*
*
10 *ﬁ
10 * 4
*
*
*
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o *
¥*,
g s %,
o 107 xkﬁ 4
E *
g
o i o 0o oo oo
g 0 ° 8 eg
S 100 F % o .
8 ® o
L = =
ko] &
= ’313{
10° |+ B
O THETA6
WPl | % detiff
#x  condDiff
107 L
10 10
Iteration

Figure 3.4.6. The results for ©, Adet(R) and Acond(R) .
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34.7: rank(R) = rank(ﬁ) =10, rank(B) =3, rank(A,) = 7,rank(A,) =3.

Let R will be 10-dimensional correlation matrix:

ay, ap a4 a4y 45 4 4y 0 0 0
Ay Ay Ay Gy Uy Gy Ay 0 0 0
Ay Ay Ay Ay Ay Gy Ay O 0 0
Ay Qg Ay Ay Ay Ay Ay 0 0 0
R= a5, a5, a5y Ay dss dsg ds; 0 0 0
dg dg dg Aoy g5 Agg dg; O 0 0
a1 Qg Ay Qg Qg5 Qg Qg 0 0 0
0 0 0 0 0 0 0 ay a4 ag
0 0 0 0 ay ay a
| 0 0 0 0 0 0 0 a ag a |
» Matrix closeness measures =f(Submatrices Linkage)
10 T
¥ pe %
" ok, - THETA4
10" | an x THETA5 | -
"o *  detDiff
1 Fey % _condDiff
10" | %
10° |+
8 x
§ 10° % « x X xox
% XX x
= L X x
&
@ 5 g
210" | 1:)(:}
2 U
% ped
§ 10-10_
g
10"+
107
10-25_
10-30 0 I ' ] ' ' ' — ]1 ' ' ' ' ' ' — 2
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Iteration

Figure 3.4.7. The results for @, Adet(R) and Acond(R) .



3.4.8.

Let R will be 10-dimensional correlation matrix:

rank(R) = rank(ﬁ) =10, rank(B) =2, rank(A,) = 8,rank(A,) =2.

ay 4 43 4y 45 dig 4y Ay 0 0
Ay Ay Gy Gy dys Ay Gy Qg 0 0
Ay Ay Ay Ay Qys Ay Ay Gy O 0
Ay Gy Gy Gy Gy Gy Gy Ay O 0
R = as; a5, ds; As,  dss Ay ds; dsg 0 0
A Qg Qg Ao g gy dg A 0 0
A7) Ay Az Qg s Ay Gy Ay O 0
Ay, gy gy dgy  Ggs Ay Uy dgg 0 0
0 0 0 0 0 0 0 0  ay ag,
1 0 0 0 0 0 0 0 0 ag ay]
2 Case 8: Matrix closeness measures =f(Submatrices Linkage)
10 l
¥ %
10" | oo, E
o
*
K e
1010_ *f}* -
*
10° + %‘%‘bﬁ .
%
{Q Q@
§1o° <X>
2 ) 3
2 e
810 |
8
o
210'“’—
§ X THETA5
10"k & THETA7
% detDiff
“x  condDiff
107} .
107+ p
10 !
10° 10’ 10
Iteration

Figure 3.4.8. The results for ©, Adet(R) and Acond(R) .
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3.4.9

rank(R) = rank(ﬁ) =10, rank(B) =1, rank(A,) =9,rank(A,) =1.

Let R will be 10-dimensional correlation matrix:

Matrices closeness measures

>

a, ap a3 4y 4 G 4y A Gy
Uy Ay Gy Gy ys Gy Uy Gy Uy
ay Ay Ay iy Gys Gy Oy Gy Uy
Ay Ay Ay Gy Gy Qyg Ay Qg Uy
s 45y ds3 dsy sy Asg Qs;  dsg dsg
dgy Qg g3 gy Udgs g U Qg Qo
Ay g gy gy Qg5 Gy Ay Qg Gy
Qg gy gy gy dgs g Ugy  Qgg g
gy gy oy gy Gos dog  Uog;  Qgg  Qyg

Matrix closeness measures =f(Submatrices Linkage)
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Figure 3.4.9. The results for ©, Adet(R) and A cond(R) .
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Table 1.

Criteria Type Interval Criteria graphical description

3.2. Sequence R of matrices R,,rank(R;) =4

3.2.1.rank R = 4;rank R, =rank R, =2

®I(R,R) (1, 100) (1, 100)- Convex decreasing curve;
®2(R,R) (1, 100) (1, 100)- Convex decreasing curve;
Adet(R,ﬁ) (1, 12) (1, 12) - Segment of Convex decreasing curve;

(12, 100) - Segment of Horizontal line

Acond(R,R) (1, 12) (1, 12) - Segment of Convex decreasing curve;
(12, 100) - Segment of Horizontal line

3.3. Sequence R Matrices R,,rank(R,) =5

3.3.1.rank(R) = rank(R) = 5, rank(B,;) =rank(A,) = 2,rank(A,) =3.

®I(R,R) [1,20], 2 segments of convex decreasing curve with
[25,100] small horizontal plateau (20,25) in the interval

®2(R9R) [1,23], 2 segments of convex decreasing curve with
[25,100] small horizontal plateau (23,25) in the interval

Adet(R,ﬁ) (1, 12) (1, 12) - Segment of Convex decreasing curve;

(12, 100) - Segment of Horizontal line

Acond(R,ﬁ) (1,12) (1, 12) - Segment of Convex decreasing curve;
(12, 100) - Segment of Horizontal line

3.3.2: rank(R) = rank(ﬁ) =5, rank(B,) =2, rank(A,) =3, rank(A,) =2

@2(R,R) (1, 100) (1, 100) - Convex decreasing curve

) (R ﬁ) (1,20) (1, 20) - Segment of Convex decreasing curve;
AR
(20, 100) - Segment of Horizontal line

Adet(R R) (1,12) (1, 12) - Segment of Convex decreasing curve;
9
(12, 100) - Segment of Horizontal line

Acond(R,R) (1, 12) (1, 12) - Segment of Convex decreasing curve;
(12, 100) - Segment of Horizontal line
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3.4. Sequence R Matrices R,,rank(R,) =10

3.4.1:rankR =10;rank R, =1;rank R, =9

0, (R,R) (1,50) (1,50) - Convex decreasing curve;
(50, 100) -Horizontal line
o, (R,R) (1,25) (1,25) - Segment of Convex decreasing
curve; (25,100) - Segment of Horizontal line
Adet(R,ﬁ) (1,25) (1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

A cond(R,ﬁ) (1.25)

(1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

3.4.2:tankR =10;rank R, = 2;rankR, =8

®I(R,R) (1,50) (1,50) - Convex decreasing curve;
(50, 100)-Horizontal line
o, (R,R) (6,20), (1,5) - Segment of horizontal line;
(50, (6,20) - Segment of Convex
100) decreasing curve; (20,50) - Segment
of horizontal line; (50,100) - Segment
of Convex decreasing curve
Adet(R,ﬁ) (1,25) (1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

A cond(R,ﬁ) (1.25)

(1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

3.4.3:tankR =10;rank R, = 3;rank R, =7

0, (R,R) (1,40) (1,40) - Convex decreasing curve with 2 small
segments of horizontal line; (40, 100) -
Horizontal line
0, (R,R) (20, (1, 20) - Segment of horizontal line; (20,100) -
100) Convex decreasing curve with 2 small

segments of horizontal line;
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Adet(R,R) (125

(1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

A cond(R,ﬁ) (1.25)

(1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

3.4.4:rankR =10;rankR, =4;rankR, =6

o

(10,100) - Segment of Convex decreasing
curve with 4 small segments of horizontal
line; (40, 100) -Horizontal line

oRR) (50

(1,50) - Segment of Convex decreasing

curve; (50, 100) - Segment of horizontal line;

Adet(R,R) (129

(1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

A cond(R,ﬁ) (1,25)

(1,25) - Segment of Convex decreasing

curve; (25,100) - Segment of Horizontal line

3.4.5:rankR =1G;rankR, =5;rankR, =5

®7(R,1i) (1,100)

(1,100) - Segment of Convex
decreasing curve with 4 small

segments of horizontal line

rdelRR) (125)

(1,25) - Segment of Convex
decreasing curve; (25,100) -

Segment of Horizontal line

Acond(R,ﬁ) (1.25)

(1,25) - Segment of Convex
decreasing curve; (25,100) -

Segment of Horizontal line

3.4.6: rankR =10;rankR, =6;rankR, =4

®6(Raf*) (1,55)

(1,55) - Segment of Convex
decreasing curve with 2 small
segments of horizontal line;
(55,100) - Segment of Horizontal

line
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Adet(R li) (1 ,25) (1 ,25) - Seglnent of Convex
9
decreasing curve; (25,100) -

Segment of Horizontal line

A Cond(R,ﬁ) (1,25) (1,25) - §egment of Convex
decreasing curve; (25,100) -

Segment of Horizontal line

3.4.7: rankR=10rankR, =7;rankR, =3}

0, (R,R) (1,50) (1,50) - Segment of Convex
decreasing curve with 2 small
segments of horizontal line;
(50,100) - Segment of Horizontal

line

A det(R f{) (1,25) (1,25) - Segment of Convex
9
decreasing curve; (1,100) -

Segment of Horizontal line

Ac ond(R,li) (1,25) (1,25) - .Segment of Convex
decreasing curve; (1,100) -

Segment of Horizontal line

3.4.8: rankR =10;rankR, =& rankR, =2

0, (R,ﬁ) (20,45), (.1 ,20) - Segment of Horizontal
(60,100) line; (20,45) - Segment of
Convex decreasing curve;
(45,60) Segment of horizontal
line; (60,100) - Segment of

Convex decreasing curve

0, (R,li) (1,50) (1,50) - Segment of Convex
decreasing curve with 3 "wild
points"; (50,100) - Segment of
Horizontal line

Adet(R ﬁ) (1 !25) (1 ,25) - Seglnent of Convex
9
decreasing curve; (1 ,100) -
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Segment of Horizontal line

A cond(R, ﬁ)

(1,25)

(1,25) - Segment of Convex
decreasing curve; (1,100) -

Segment of Horizontal line

3.49rankR =10;rank R, = 9;rankR, =1

0,(R,R)

(15,100)

(1,15) - Segment of Horizontal
line; (15,100) - Segment of

Convex decreasing curve

Adet(R,R)

A cond(R, ﬁ)

(1,25)

(1,25)

(1,25) - Segment of Convex
decreasing curve; (1,100) -
Segment of Horizontal line

(1,25) - Segment of Convex
decreasing curve; (1,100) -

Segment of Horizontal line
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3.5. The matrices block linkage LINK and detR are variable

Let’s construct two sequences of matrices:

R = R, with detR; <detR, ,if k, > k,, Vk .k, elK,
B, =LINK'*B, i=1,N; 0<LINK <1. Then

lim_, B, =0andlim__ O(R,R)=0..

and

w= RO

where

Rix = {Aw BikT:| Iik =|:A1k 0 }
Bi A, 0 A,

with detR, <detR, and detIQKl <1det|ik2, if k,>k,, Yk ,k,el,K.
Let construct the response functions Fe, F, .z and F, g On surface
(LINK , det R)for ® (R , R), Adet R and Acond R.

Fo =F(LINK, det R, ® (R, R)), LINK e {1016,10%, det R e

{107, 1013}.

The Fy r, Presented as contours on Fig. 4, F,,,; - on Fig. 5 and

F,.mar -onFig. 6.



Figure 4.

Response function F, = F( LINK,det ﬁ, 0),
LINK < (107°,10° ). detR < (107,10"
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Figure 5.

Response function F| =F( LINK ,det R,|detR —detR ),

det R—detR|

LINK (107,10° ) detR (107,10




Figure 6.

= F( LINK ,detR,|condR — condR)),

Response function F‘wn condi

LINK € (107°,10° ) detR < (107,10

41
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Table 2.
Criteria LINK Det R Incorrect | DetR Criteria
Type Correct Correct | Region Incorrect | Slope
Region Region | for LINK | Region

| (-14,-3) (6, 13) None None 1
®, (R, R)
Adet R (-14, -1.5) | (6, 13) None None 2
Acond R (-10,-1.5) | (8,13) |(-13,-10) |(6.5,10) |2
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Conclusions for Numerical Experiments

1. For detR; = constand LINK = Var:
o Criteria ®, (R, R) correctly represented matrices linkage
decrease process for all iterations for 3.2.1, 3.3.1, Cases.
o Criteria ©,(R,, R) correctly represented matrices linkage
decrease process for all iterations for 3.3.1, 3.3.2 Cases.
o Criteria A(det(R)), A(cond(R)) adequately represented
process only for 10 first iterations for all 3.4. Cases.

o There are several Theta Criteria, applicable for 3.4. Cases.

They are better in accuracy than A(det(R)), A(cond(R)).

o In all of our experiments exists at least one © criteria

A(det(R)) .4 Alcond(R))

with superior accuracy to for

identification of very weak linkages between matrices.

2. For det Ry = Var, LINK = Var:

a. The criteria © | (R ,, R) is correct for the whole domain
with constant slope m = 1.

b. The criteria Adet R is very steep and can be used for the
whole domain.

c. The criteria Acond R was incorrect for small LINK .

d. The @ criteria have a tremendous potential for
improving accuracy in analysis of multi-dimensional

objects and systems.
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CHAPTER IV

Applications

4.1. Preliminary Conditions
Let us specify preliminary conditions for Theta Criteria usage:

* Standard Statistical Regression Analysis has been performed.

* Accuracy of Standard Statistical Regression Analysis is inadequate.

* Application can be described by set of multiple variables.

* The application data accuracy is suitable for evaluation of its
spectral characteristics.

* Available statistical or mathematical software tool to evaluate

eigenvalues and eigenvectors.

We will now discuss various application areas for Theta Criteria.
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4.2. IED Identification

Improvised Explosive Devices (IED) are made from 5 basic types of
plastic explosives: C-4, PENO, Primasheet, RDX and Semtex. The IED
can also be made using over-the-counter chemicals: aspirin, phenol,
bleach, pool chorine compound, etc. These explosives are concealed

underground, inside metal structures or strapped to human body.

Regrettably, existing identification methods do not have the desired
accuracy to detect IED. We proposed our recommendation for

IED identification to U.S. Department of Defense (DoD).

4.3. Aircraft Engine Failure Identification
Theta Criteria can be used for Aircraft Engine Failure Identification.

Implementation details are available upon request.

4.4. Medical Applications

Theta Criteria can be used for identification and therapy of various
diseases, disorders and illnesses. Implementation details are available

upon request.

4.5. Financial Problems Analysis
Theta Criteria can be used for Financial Application Analysis.

Implementation details are available upon request.
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